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Introduction
Among the potential carbon emission reduction strategies, car-
bon capture and storage (CCS) serves as a promising technolo-
gy to mitigate the anthropogenic effects of climate change and 
meet the goals of the Paris Agreement. The Emission Scenarios, 
which depict possible pathways that society might undertake to 
limit the emission of greenhouse gases, require widespread CCS 
deployment to help reduce direct emissions from the burning 
of fossil fuels or from industrial processes, and to create nega-
tive emissions, such as in combination with bioenergy (BECCS).

Several CCS projects are currently under development. The 
transport of CO2 from industrial sources to storage in geological res-
ervoirs is planned in Europe and elsewhere. The capture of CO2 will 
expectedly arise from various industrial sources including cement, 
steel, petrochemicals, biofuel and waste incineration production, H2 
production from natural gas reforming, etc. Such industrial sources 
will not continuously operate at baseload conditions 24/7. Hence, 
temporal and spatial variations in pressure, temperature, flow, and 
composition are expected throughout the value chain.

The deployment of large-scale CCS requires a deep and 
reliable understanding of the physics and the thermodynamics 
of the processes involved [1] and accurate process monitoring 
and control to enable safe operation, reliable custody trans-
fer, and auditing. Several research outputs have outlined how 
challenging achieving the above is and the potential impact on 
CCS’s costs and the overall business [2, 3].

An efficient Internet of things (IoT)-based strategy is essen-
tial for the real-time monitoring of large-scale CCS to ensure 

safe and reliable flow of CO2 to the permanent storage sites. 
Recent advances in the design of IoT technologies are spurring 
the development of efficient strategies for industrial process mon-
itoring based on industrial IoT (IIoT) and fault diagnosis using 
digital devices, sensors and accelerometers. By applying IIoT 
solutions, it is possible to realize effective monitoring methods for 
CO2 to ensure environmental and public safety in implementing 
large-scale systems for CCS. Such accuracy, however, deterio-
rates during operation, and eventually, sensors become faulty 
and unreliable. The sensors are susceptible to faults due to (i) 
harsh environmental conditions; and (ii) hardware and inherited 
limitations, including low battery level, calibration issues, short 
life span, and poor connections [4]. Timely sensor fault detection 
and diagnosis play a crucial role in improving IIoT system safety, 
availability, and reliability as well as reducing the risks of cata-
strophic failures and maintenance costs [5].

Against this background, sensor validation through fault 
detection, isolation and accommodation (FDIA) methods serves 
as a promising solution for detecting anomalies in the CCS sys-
tems. FDIA techniques can broadly be classified into data-driven 
and model-based schemes. The data-driven approaches mainly 
rely on the huge volume of historical data to characterize the 
behavior of the system. The main advantage of these methods 
is that they do not require exact knowledge of the mathemati-
cal model of the system to be monitored. Hence, they are suit-
able for complex systems where explicit models are difficult to 
establish. They are easy to implement and can capture non-lin-
ear behavior by learning through historical data recorded by 
the sensors. Due to the merits stated above, several data-driven 
sensor fault detection, isolation and accommodation (SFDIA) 
approaches have been investigated for industrial process mon-
itoring in [5]. Some of these approaches are based on artificial 
neural networks, convolution neural networks [6] and deep 
learning [7]. Further, a fault detection and diagnosis method 
for electric motors is presented in [8], where multiple features 
that indicate different faults are extracted by cross-correlation 
improved spectral kurtosis. The features are then combined to 
form a health index using principal component analysis (PCA) 
and a semisupervised K-nearest neighbor (KNN) distance mea-
sure, which is then evaluated for fault detection. However, the 
data-driven methods require a large amount of data especially 
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for training, and can only be used if the given system can gen-
erate enough data from the sensors. Further, it is challenging to 
deal with incomplete data usually in terms of missing or erro-
neous data values and enormous computational effort makes 
these methods inappropriate for online implementation [5].

On the other hand, model-based approaches have gained 
popularity because of their theoretical merits, higher accuracy, 
and effectiveness. These techniques serve as promising tools for 
anomaly detection and isolation, especially in scenarios where 
accurate mathematical model of the monitored industrial pro-
cess and its associated parameters are precisely known. Gen-
erally, the model-based approaches perform fault diagnosis by 
computing residuals which represent a difference between the 
original output and its estimate obtained using an observer. The 
observers play an important role in model-based techniques 
and some of the model-based observers are Kalman filter 
(KF) for linear systems and cubature KF, extended KF (EKF), 
modal KF, and unscented KF (UKF) [9] for nonlinear systems, 
which are robust against model uncertainties and disturbanc-
es. Nevertheless, these methodologies are heavily dependent 
on the knowledge of system model/ parameters, which may 
not be always available and are difficult to implement in pres-
ence of nonlinearities. In conjunction with the model- and data-
based techniques, multi-sensor data fusion techniques can be 
employed to minimize the computational burden and enhance 
the decision-making of the overall system [10].

Although SFDIA methods have been extensively devel-
oped for a wide selection of applications including combus-
tion engines, electric motors, mining and several others, their 
applicability in CCS is not straightforward. It is challenging to 
perform fault diagnosis in CCS systems due to the need of a 
physical model that accurately replicates the dynamics of CO2 
transport between affected sensors over a broad range of oper-
ating conditions, including varying composition, phase chang-
es, and transient phenomena, among others. To address the 
above-mentioned concerns, this article discusses the monitoring 
and control requirements of the CCS system and highlights the 
challenges associated with designing anomaly detection tech-
niques for such systems.

The organization of the article is as follows. We provide an 
overview of the CCS systems and various challenges related to 
these systems. We investigate the existing state-of-the-art meth-

ods for sensor validation and their application in the context of 
CCS. We present a roadmap for IoT-based monitoring in CCS 
systems. The potentiality of a unique facility demonstration of 
flow assurance for CO2 transport operations (DeFACTO), cou-
pled with projects targeting monitoring and control networks 
for CCS (MACON CCS) and sensor validation for digital twins 
of safety-critical systems (SIGNIFY) are also outlined. Finally, 
we summarize the main conclusions of this study and suggests 
future research paths.

Challenges in Monitoring of CCS Streams
CCS monitoring presents numerous challenges. Some of the 
main hindrances are related to the thermodynamic properties 
of CO2, the presence of impurities in the CCS streams, and the 
transient character of the processes [11].

At the system level, the CCS conditions are intrinsically dynam-
ic. The CO2 capture plants are expected to asynchronously inject 
CO2 to the downstream network and pipelines (Fig. 1), depend-
ing on the operational scheme of the CO2-source processes. The 
downstream pipe networks and export pipelines, thus combine 
CCS streams of varied compositions from several CO2 capture 
sites, as illustrated in Fig. 1. This setup leads to temporal and spa-
tial variations in the compositions, mass flow rate, pressure, and 
temperature with distinct flow assurance challenges.

Even in small concentrations, impurities in the streams could 
drastically affect the phase behavior and can considerably dete-
riorate the accuracy of the measurement technologies, espe-
cially if a second phase arises. This is particularly relevant for 
composition tracking and for meters that are flow-pattern- or 
phase-sensitive, like fiscal meters. A second phase will typically 
be enriched with possibly flammable, corrosive, and/or toxic 
impurities. Two-phase liquid-gas conditions can occur in pipe-
line sections in a variety of scenarios, including after unintended 
shutdown sequences, due to terrain topography that favors liquid 
deposition in low points, from evaporated components from the 
CO2 liquid stream, or when operational conditions are close to 
the saturation line, as is the case of CO2 ship offloading.

The above challenges warrant monitoring solutions to ensure 
process control, inventory tracking, flow assurance, and swift 
leak detection. Continuous pressure and temperature monitor-
ing and regular sampling are customary. This is however not 
the case with flow metering devices for long pipeline systems, 

Figure 1. CCS value chain showing the main measuring points. Typical locations for sensors (pressure, temperature, mass/volume 
flowrates and compositions, or any combination of them) are indicated throughout. The different colors in the piping around CO2 
capture clusters and export pipelines illustrate different possible stream compositions at any given time.
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where relying on measurement layouts at short and regular 
intervals is impractical. Further, pipeline inspection can prove 
expensive, disruptive, and unfeasible. In this context, sensor val-
idation and predictive knowledge of the CO2 stream behavior 
are of the utmost relevance.

Metering
Under typical CCS operating conditions, CO2-rich streams can 
be in gas, liquid, or dense phases throughout the value chain. 
The transport of large amounts of CO2 is done via pipelines, 
with CO2 being in a liquid or dense phase. At shorter distances, 
CO2 streams may also be transported in a compressed gas-
eous phase. Depending on the operation conditions along the 
value chain, gas flow meters are needed in the outlet of capture 
plants and in onshore networks, and liquid-service meters in 
export pipelines, loading, and off-loading terminals, and injec-
tion wells (Fig. 1).

The overarching use of measurement technologies in the 
developing CCS value chains comprise
•	 Process monitoring, as redundancy measurements, or to 

complement other measurement methods in multimodal 
configurations as well as composition and flow-phase checks 
to ensure the accuracy of adjoining flow metering devices

•	 Flow assurance, including dry ice formation, pipeline integrity, 
and leak detection [11].
The CO2 flow monitoring technology market is still in an 

early development stage with limited experimental data on two-
phase flow or composition measurements for CO2-rich mixture 
transport [2].

Flow Modeling
The representation of pipeline transport conditions through 
mathematical models that predict the behavior of systems is 
beneficial for process design and control. The pressure drops 
along a pipe section can be estimated using density-energy 
formulations, given known process conditions, i.e., compo-
sition, pressure, and temperature from reliable sensor data. 
The value of flow modeling lies in the reduction of economic 
and physical risks as well as in the possibility of predicting 
flow behavior. The prediction of flow phenomena is relevant 
both under normal operating conditions where temporal and 
spatial variations of the CO2 stream composition, phase dis-
tribution, and pressure are expected downstream of capture 
sites, as well as in the face of extraordinary events that escape 
normal operation schemes, such as leaks and rapid transients. 
The flow modeling provides accelerated estimates in the pres-
ence of changes in process variables, which minimizes control 
delays and operational costs.

The thermodynamic properties of pure CO2 at equilibrium 
are described with high accuracy by the Span-Wagner refer-
ence equation of state (EoS) [3]. Even though multiparameter 
EoSs, currently developed for CCS have unparalleled accuracy 
in regions where experimental data are available, they have 
challenges related to robustness and limited extrapolative prop-
erties [12]. Also, EoSs are usually not written in a form suitable 
for fluid-dynamic simulations. The required density-energy for-
mulations call for the development of fast and robust numerical 
algorithms to solve phase-equilibrium equations with the speci-
fication of energy and density. For CCS, in particular, the trans-
port of CO2-rich streams differs from that of other fluids such 
as pure CO2 or natural gas in several ways. For CO2 mixtures 
containing impurities, robust and time-efficient solutions of the 
phase equilibrium have proven to be challenging [13].

Digitalization Complexity
Safe and reliable large-scale CCS entails an effective health 
monitoring strategy to guarantee flow assurance and detect and 
minimize leakage throughout the value chain. The development 
of effective IoT-enabled monitoring tools for CO2 relies on 
measurements from a sensor network, where sensors monitor 

the temperature, pressure, and flow across the process. Various 
concerns exist regarding the performance and accuracy of flow 
meters at relevant CCS conditions and stream composition [2, 
11], as well as the extraction of valuable data from high-fre-
quency monitoring sensors to support real-time detections.

In this context, data fusion could prove effective to cap-
ture reliable and accurate information from different sources 
along the CCS value chain and combine information about 
spatial locations. However, data fusion techniques require a 
physical model of the CCS system that reveals the dynamics 
of CO2 transport and decreases the uncertainty of CO2 han-
dling [14]. The capabilities of modeling tools for the predic-
tive assessment of CO2 are key. The complexity of transient 
computation for CCS transport processes could benefit from a 
step-wise approach based on simple geometries and fully devel-
oped flows. It is crucial that high-quality and highly accurate 
experimental data is used to provide a certain measure of the 
degree to which a given flow simulation model is accurately 
representing the physical phenomena governing the transport 
process. The reference experimental data must necessarily be 
representative of the relevant thermophysical properties of CO2 
to target flow assurance and be able to replicate the issues of 
concern at relevant process conditions.

Once the flow model is successfully validated, the simulation 
outputs can be used for the design of optimal sensor numbers 
and distribution along with a pipeline network and for control 
operations based on the detection and the replacement of 
measurements from faulty or unreliable sensors with the esti-
mates corresponding to virtual sensors.

Unreliable sensor data can arise from hardware/software 
failures or other process-driven reasons, e.g., phase transitions. 
The erroneous measurements from the sensors may hamper 
the secure and reliable functioning of the system and can even 
cause severe damage to the whole system. Dependable sensor 
measurements are of paramount importance to ensure safe 
operation, comply with regulations, and enable fair trading of 
5 Gt of CO2 per year by 2050, ultimately warranting the CCS 
business model. To ensure measurement reliability, addressing 
sensor faults is key. Sensor validation, in turn, requires efficient 
fault diagnosis techniques, which are discussed in detail in the 
subsequent section.

Sensor Validation
CO2 monitoring is highly dependent on reliable sensor mea-
surements. Yet, sensors are susceptible to faults and, conse-
quently, the accuracy, the stability, and the reliability of CCS 
systems get affected by sensor faults. Sensor faults may exhibit 
different characteristics depending on the type of sensors and 
the operating scenario, however, they are usually represented 
through analytical models for statistical analysis.
The most common models for sensor faults are:
•	 Bias/offset fault, where sensor values deviate by an additive 

constant bias
•	 Drift fault, where sensor values drift with a small slope from 

the original values
•	 Freeze/stuck at fault, where sensor value gets stuck at a con-

stant value
•	 Noise fault, where sensor values experience large noise levels.

To efficiently exploit the CCS, an early sensor fault diagnosis 
is crucial for risk management, while assuring the reliability and 
safety of the overall system. Generally, the SFDIA comprises of 
following tasks:
•	 Detection, i.e., determination of the presence of an anomaly 

within the network
•	 Isolation, i.e., identification of the faulty sensor(s)
•	 Accommodation, i.e., replacement of the faulty sensor mea-

surements with reliable measurements.
Therefore, by employing the SFDIA architecture, the processing 
of corrupted sensor data and the associated consequences 
ranging from performance degradation to risk of danger and 
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lack of security can be avoided. Based on the above frame-
work, the data-driven and model-based architectures for SFDIA 
in CCS systems are discussed next.

Data-Driven SFDIA Approach
A data-driven SFDIA architecture that exploits the temporal cor-
relation of faulty and non-faulty sensor measurements is devel-
oped for digital twins in [4]. The goal of the proposed SFDIA 
is to detect anomalies in the sensor measurements, identify 
the faulty sensors, and replace them with fault-free estimat-
ed data, thus facilitating reliable digital twins. The proposed 
framework is a three-stage SFDIA architecture, as demonstrat-
ed in Fig. 2. The first stage entitles a bank of virtual sensors 
which allows to accommodate for unreliable sensors by esti-
mating measurements of the faulty sensors. This stage effec-
tively models the nonlinear behavior of estimators through a 
multilayer perceptron (MLP) architecture. The second stage 
is the residual computation unit, which computes a measure 
of dissimilarity between the sensor measurement and its cor-
responding estimate obtained from the virtual sensor. Final-
ly, the last stage represents the sensor-fault classifier, which 
classifies a sensor as faulty or reliable based on the residual 
measures from the unreliable sensors and also replaces the 
faulty measurements with the estimate obtained through its 
corresponding virtual sensor.

The performance of the architecture has been validated 
for three distinct real-world data sets corrupted with syntheti-
cally-generated soft and hard sensor faults. Results published 
in [4] demonstrated that, for the data sets used, the proposed 
approach can achieve high detection probability and correct 
classification with a low probability of false alarm in the pres-
ence of weak drift and bias faults, which are difficult to detect. 
Further, the proposed machine-learning-based SFDIA frame-
work has also been validated for the emerging CCS technology. 
A preliminary set of results are provided in Fig. 3 and Fig. 4, 
which demonstrate the efficacy of the proposed architecture in 
detecting the synthetically-generated bias faults. The results are 
performed using the real measurements from the temperature 
sensors installed on the surface of the CO2 pipeline DeFacto 
(described next) with simulated faults. Figure 3 shows encour-
aging performance in terms of probabilities of detection (Pd), 
classification (Pc), and false alarm (Pf), however these results 
are to be considered preliminary as more critical operational 
conditions need to be explored. Moreover, Fig. 4 demonstrates 
the training phase evolution of the classifier (per-sensor) binary 
cross-entropy (BCE) loss function versus the number of epochs 
on both training (solid lines) and validation (dashed lines) sets 
under bias faults.

Model-Based SFDIA Approach
Among the model-based techniques, the KF-based FDIA 
approach is widely employed because of its theoretical mer-
its and effectiveness. The quickest change detection methods 
can also be employed for the real-time detection of abrupt 
changes in the behavior of the observed signal from a single 
sensor or a group of sensors [15]. Recently, fault and state 
estimation in nonlinear systems have gained research interest, 
which has led to the development of various FDI approaches 
based on EKF, UKF, and particle filter. A systematic three-step 
fusing UKF based approach for fault diagnosis in nonlinear DC 
microgrids is proposed in [9]. The method offers a low com-
putation burden, especially in the case of multiple sensors and 
multiple faults. Such compelling advantages could be leveraged 
to detect single and multiple sensor faults in the CCS systems. 
A similar model-based SFDIA framework that employs UKF, 
EKF, or particle filter targeting CCS systems can be designed 
as follows. All sensor measurements are initially grouped into 
locals, which are utilized by the local UKFs to estimate the non-
linear system states. Then, the state residuals are evaluated to 
detect the faulty sensors. Lastly, the faulty sensors and their 

corresponding state estimations are isolated and replaced by 
fault-free measurements, which are used to compute accurate 
global estimates.

Further, data fusion methods, which focus on combining infor-
mation from multiple sensors, can also be integrated with both 
model- and data-driven approaches to facilitate the fault diag-
nosis in the CCS systems. The implementation of these meth-
odologies will help in reducing the computational burden and 
eventually enhance the decision-making of the overall system.

Figure 2. Block diagram of the SFDIA system.

Figure 3. Detection and classification performance of the data-
driven SFDIA scheme.

Figure 4. Training/validation loss of the data-driven SFDIA 
scheme.
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Roadmap for IoT-Based 
Monitoring in CCS Systems

Various ongoing initiatives are underway to advance the current 
state of the art of CCS monitoring, in correspondence with the 
roadmap proposed in Fig. 5. The project MACON CCS focuses 
on the first two development stages, namely demonstration of 
sensor capabilities for CCS and flow experiments, to advance 
the development of dynamic simulation models targeting the 
transport of CO2-rich mixtures at relevant operational condi-
tions. Emphasis is on advancing in development and integration 
of novel EoSs into a modeling software solution enduring fast 
and robust numerical solution phase-equilibrium equations of 

CO2 mixtures containing impurities. MACON CCS will also pro-
vide an overview of measurement principles and existing com-
mercially available technologies that could potentially be used 
for flow and concentration measurement scenarios in ongoing 
and future CCS projects, i.e. field measurement – stage 3.

SIGNIFY is another complimentary project that covers pro-
cesses 2, 4 and 5 of the roadmap (Fig. 5). SIGNIFY works to 
develop IoT-based fault diagnosis methods, especially, data-driv-
en and model-based approaches to prevent the processing of 
corrupted sensor data by digital twins in real-time, especially in 
safety-critical applications, and avoid erroneous action planning. 
Further, the project aims to develop a physical model for CCS 
systems, yet the model’s capability to reproduce complex operat-
ing conditions and obtain sound results depends on the reliability 
of the experimental data and on the accuracy of the sensors.

For stage 2, both projects above exploit the experimental 
capabilities of SINTEF’s DeFACTO infrastructure. DeFACTO is 
a highly instrumented experimental facility that includes a 139 
meters long horizontal loop and a 90 meters deep vertical 
U-tube, enabling the study of both horizontal and vertical flow 
phenomena relevant to transport phenomenon for CCS (Fig. 
6). The CO2 loops operate at up to 160 bar, the vertical section 
has a tight heat transfer system that allows operation at tempera-
ture between 5°C and 35°C. The experimental studies within 
MACON CCS and SIGNIFY comprise steady-state liquid or gas 
flow and transient phenomena, including rapid depressurization 
and cavitation. The gathered data will allow the validation of 
simulation tools to reduce model error’s effects and improve the 
understanding of CO2 transport phenomena and the associated 
flow assurance problems. Further, the integration of IoT-based 
monitoring systems will enable timely detection and identification 
of process anomalies and sensor anomalies in real time.

Conclusions
This manuscript presented an overview of the monitoring and 
control requirements of the CCS system, with particular atten-
tion on the challenges associated with metering, flow modeling, 
and digitalization. Further, the state-of-the-art methods for sensor 
validation specifically model-based and data-driven approaches 
in conjunction with the data fusion strategies and their applica-
tion in the context of CCS systems were investigated.

Figure 6. Illustration of the DeFACTO experimental facility.

Figure 5. Roadmap to develop monitoring & control capabilities for CCS with the output from each development stage.
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A roadmap for monitoring and control of CCS processes 
was proposed. Ongoing work focus is on tackling the intrinsical-
ly challenging thermodynamic properties of CO2-rich streams, 
the extrapolation constraints of existing multiparameter EoSs, 
and the lack of readily available fast and robust numerical 
algorithms for flow modeling of CCS conditions. The valida-
tion of flow simulation tools for IoT-based monitoring is also 
being addressed through acquisition of high-quality and highly 
accurate experimental data at relevant transport conditions. 
This is done within the MACON CCS and SIGNIFY projects by 
exploiting the capabilities of the unique DeFACTO facility. The 
experimental data is to be used for EoS formulation, flow model 
tuning, and sensor validation.

Future areas of research could include the development 
of traceable measurement methods and equipment to verify 
the accuracy of meters under real CCS operation conditions, 
the development of model-based and hybrid analytic solutions 
for facilitating fault detection in the CCS systems, followed 
by validation of the proposed solutions for synthetic data and 
real-sensor measurements. In addition, the proposed frame-
work can be extended to support real-time fault diagnosis for 
multiple sensor failures.
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